
Data Weeding Techniques Applied to Roget’s Thesaurus

Uta Priss, L. John Old

Napier University, School of Computing,
u.priss@napier.ac.uk, j.old@napier.ac.uk

Abstract. It can be difficult to automatically generate “nice” graphical represen-
tations for concept lattices from lexical databases, such as Roget’s Thesaurus,
because the data sources tend to be large and complex. This paper discusses a va-
riety of “data weeding” techniques that can be applied in order to reduce the size
of a concept lattice, first, in general and then with respect to Roget’s Thesaurus.
The aim is that resulting lattices should display neither too much, nor too little
information, independently of which search terms have been entered by a user.

1 Introduction

Large and complex concept lattices provide a challenge for Formal Concept Analysis
because they can be difficult to display and navigate by users. Lattices that are auto-
matically derived from lexical databases, such as Roget’s Thesaurus, tend to be large
and complex. What is needed is some purpose-driven manner of size reduction and se-
lection of subsets of the data. Decisions about which data to select resemble a form of
“weeding” in a garden because whether a plant is considered useful or a “weed” does
not usually depend on structures of the plant itself but solely on whether it grows in a
desired location. Thus we define “data weeding” techniques as techniques that select
data from a given set based on the specific needs and purpose of an application.

A variety of existing Formal Concept Analysis (FCA) methods can be called data
weeding techniques. These techniques consist of selecting subsets of the data, reducing
the visual complexity and displaying only parts of the concept lattice or applying com-
puter graphics techniques to concept lattices. The choice of the technique usually relies
on the type of application. This paper provides an overview of data weeding techniques
in general, and then analyses their applicability to Roget’s Thesaurus. The goal for this
research is to automatically generate lattices from Roget’s Thesaurus in a manner that
adjusts the data weeding techniques for each request. The resulting lattices should al-
ways display neither too much, nor too little information, independently of which search
terms have been entered by a user.

Data weeding techniques for FCA can be categorised into four types as shown in
Table 1. The first type, visual reduction techniques, are techniques that change how the
data is displayed without changing the mathematical structure of the underlying concept
lattices. The second type, faceting and plain scaling, are techniques which lead to a
division of the original concept lattices into smaller lattices without information loss.
The original lattice can be reconstructed from the facets/scales. The division should be
meaningful with respect to the content of the lattice. For example, if the attributes can
be naturally subdivided into a set of partitions, then a separate lattice can be drawn for



each partition of the data. In FCA, this is called “plain” scaling (Ganter & Wille, 1999)
for single-valued contexts.

The third type, pruning and restricting, consists of techniques which reduce concept
lattices by removal of objects, attributes or concepts. The fourth type, decomposition
and general scaling, decomposes a lattice and at the same time reduces complexity. In
contrast to the second type, where the complete set of facets contains the same amount
of information as the original lattice and the subdivisions tend to be meaningful, prun-
ing, restricting and decomposition techniques usually produce lattices of reduced in-
formation content, often derived by removing objects, attributes or concepts based on
statistical criteria. A pruned, restricted or decomposed lattice tends to represent what a
user considers to be important or focal content of the original lattice.

Type of reduction: Effect on lattice:
Visual reduction Lattice structure is not changed.
Faceting and plain scaling Lattice is divided without information loss.
Pruning and restricting Some concepts are removed.
Decomposition and general scaling Lattice is divided with information loss

Table 1. Four types of data weeding techniques

The following four sections of this paper provide an overview of the four types of
data weeding techniques. Section 6 discusses the applicability of these techniques to a
lexical database of Roget’s Thesaurus.

2 Visual reduction techniques

The first set of data weeding techniques are visual reduction techniques which change
how the data is displayed without modifying the underlying structure. Many FCA tech-
niques for visual reduction have been described in the literature:

Clarifying and reducing (Ganter & Wille, 1999) result in omitting labels (and the
corresponding objects and attributes) without changing the lattice structure. A clarified
lattice has at most one object and at most one attribute attached to each concept in
the lattice diagram. In the example at the top of Fig. 1, the concept furthest to the
left has two objects (“daffodil” and “sunflower”) and the concept furthest to the right
has two attributes (“purple”) and (“dark red”). In the clarified version “sunflower” and
“purple” are removed. If the clarification is achieved using FCA software, then usually
the object/attribute that is listed first in the formal context is retained. This choice may
not be optimal with respect to the application. Reducing will further remove all objects
that are not at join irreducible concepts and all attributes that are not at meet irreducible
concepts. This means that in the lattice diagram objects are only attached to nodes that
have exactly one edge coming from below and attributes are only at nodes that have
exactly one edge from above (Fig. 1). Again, reduction may not be meaningful in all
applications. In some applications where the data consists of exemplars and features, the
remaining attributes after reduction can be considered characteristic, defining features



and the remaining objects prototypical examples of the data because of their location at
meet- or join-irreducible concepts.

hollyhock

ReducingClarifying

yellow red

dark red

tulip
sunflower

coloured

daffodil orange poppy
purple

hollyhock

rose

yellow red

dark red

tulip

coloured

daffodil orange poppy

hollyhock

rose

yellow red

dark red

tulip

daffodil

Fig. 1. Visual reduction techniques: clarifying and reducing

The display of labels and nodes in the diagram can be modified by using lists,
counts and colours. While it is possible in a manually drawn lattice diagram to care-
fully place each label in a position where it does not overlap with anything else, the
automatic placement of labels in a non-overlapping manner is a major challenge for
FCA software. Thus, visual reduction strategies for the display of labels are beneficial,
both for the algorithms used by the software and for the users who will be provided with
diagrams that are easier to read. Different FCA software tools use different strategies
for visual reduction. The FcaStone1 software provides an option to draw the concept
nodes as boxes which contain lists of objects and attributes truncated to 30 characters.
In ToscanaJ2, for example, objects and attributes can either be displayed as a count
(showing the number of objects and attributes belonging to a concept instead of their
names) or as a scrollable list. Either method reduces the physical space that is occu-
pied by the labels in the display. There are different methods for how the objects and
attributes of each concept are counted: either as absolute counts or as relative frequen-
cies; either containing the full extents and intents; or only counting the ones that label
a concept in the diagram. The nodes in ToscanaJ can be coloured based on a count of
the objects. In the ConExp software3 a similar effect is achieved by varying the size of
the nodes instead of using colours as in ToscanaJ. ConExp uses colours also to show

1 http://fcastone.sourceforge.net/
2 http://toscanaj.sourceforge.net/
3 http://conexp.sourceforge.net/



whether a node has objects or attributes directly attached. This feature is especially
useful if the display of the labels is turned off.

Some FCA applications do not use lattice diagrams at all, but instead use the lattice
structure only for internal algorithms or use textual displays. An example is the Credo4

software. Credo is a meta search engine that calculates a concept lattice for the results
of a Yahoo query. The lattice is not displayed graphically but instead as an expandable
tree hierarchy. Any lattice can be displayed as a tree by creating multiple copies of any
node that has more than one upper neighbour as shown in Fig 2. The first display in
Credo consists of the top node of the lattice and its immediate lower neighbours, which
are displayed as a bulleted list that is slightly indented compared to the top node. If
a user clicks on any of the nodes, the immediate neighbours underneath this node are
displayed as a further indented list (but only up to three levels deep). Clicking on the top
node will collapse the expanded sublist. Credo’s display is similar to tree displays used
for directory listings of folders and files in a computer. Most users will be very familiar
with such displays. The drawback for these approaches is that the full lattice structure
is not immediately visible. Only the relationship between one node and its immediate
neighbours is presented.

dark red, purple:

yellow red

dark red

tulip
sunflower

coloured

daffodil orange poppy
purple

hollyhock

rose

coloured
yellow:

red:

daffodil, sunflower
tulip

tulip
poppy

hollyhock

rose

rose

dark red, purple:

orange:

dark red, purple: rose

orange:

orange:

Fig. 2. Representing a lattice as a tree hierarchy

Fish-eye and zoom are graph visualisation techniques that are used in many graph-
ical displays. Fish-eye displays (Furnas, 1981) enlarge a focal point of a display while
gradually reducing the rest of the display (as in Fig. 3). The idea is that users can move
the enlarged focal area across a display similar to using a magnifying glass. The focal
area can be read in detail while the non-focal area provides structure without detail. The
use of fish-eye views for concept lattices was first suggested by Godin et al. (1989) and
implemented by Carpineto & Romano (1995). The notion of “zooming” has been used
in different meanings with respect to concept lattices. In FCA software, “zooming” usu-
ally means to enlarge the whole lattice. If the lattice is larger than the display window,
only parts of the lattice will be visible after zooming in. Thus, this is similar to fish-eye
displays except that the non-focal parts are omitted instead of reduced. The notion of
“zooming” has also been used for the navigation from an ”outer scale” into an “inner
scale” in a nested lattice diagram in Toscana systems (Vogt & Wille, 1995). This will
be discussed below in the section about facets and scales. Roth et al. (2008) modify this

4 http://credo.fub.it



notion of “zoom” by applying local criteria to the calculation of inner scales instead of
a global algorithm.

poppy
sunflower
daffodil

yellow

dark red
purple

hollyhock

rose

coloured

red

tulip

orange

Fig. 3. Fish-eye visualisation

Moving displays are the final visual reduction technique mentioned in this section.
Moving the nodes in a lattice diagram can significantly change the visual complexity of
the diagram. From some “angles” a lattice may have a much more complicated display
(i.e., more edge crossings, less symmetry) than from other angles. Many FCA tools let
users move individual nodes of the lattice. Some FCA software allows for lattices to
be rotated. Other FCA software lets users move parts of a lattice (ideals or filters) at
the same time, which helps in the detection of symmetries and other structures in the
lattice. (More details and comparisons of FCA software can be found in Tilley (2004)
and Priss (2008a)).

3 Faceting and plain scaling

Apart from visual reduction techniques that modify the display of the lattices, but not
their internal structures, there are data weeding techniques that do change the lattice
structures. Faceting and plain scaling are techniques which subdivide the set of at-
tributes into smaller sets. The lattice of such a smaller set is traditionally called a “scale”
(Ganter & Wille, 1999). Different scales can be combined in nested lattice diagrams and
can be interactively explored in Toscana systems (Vogt & Wille, 1995). Although scal-
ing can be used in a variety of ways (with respect to “many-valued contexts”, etc), the
main idea of plain scaling is very similar to the idea of faceting in traditional library
science, which also occurs in similar form in other disciplines as described by Priss
(2008b). For both scales and facets it is usually required that the subdivisions are care-
fully selected (usually manually) and meaningful. Meaningful subdivisions will group
attributes based on their types, shared features, and so on. For example, one scale could
contain size attributes while another contains colour attributes. Each scale then arranges
the objects based on a different aspect or viewpoint (such as size versus colour).

Historically, faceted systems in library science have been less popular with end
users because it can be difficult to use such systems in a paper-based environment. To
some degree facets or scales are only really useful if they are presented via a software



interface which lets users explore the relationships interactively. This is because it is
impossible to display all of the facets simultaneously for any non-tiny data set. As a rule
of thumb, three levels of nesting (or three scales) is the maximum that can be shown
simultaneously, although in many cases even that is too much. Thus, the information
contained in a formal context and its scales is best explored interactively by starting
with a few scales, deciding how to nest them and then navigating from one scale to the
other.

Apart from Toscana systems as described by Vogt & Wille (1995), there have been
recent software developments in the library and information science community which
are potentially interesting for FCA as well because of the similarity between scales and
facets. This has been discussed in detail by Priss (2008b). Such software often presents
different scales side by side instead of nested. The effect of user selections in one scale
is instantly applied to the other scales by the software. It would be interesting to conduct
a user study comparing different techniques of representing scales. This could lead to
new developments in FCA software.

4 Pruning and restriction

In contrast to faceting and plain scaling, the data weeding technique of pruning reduces
a lattice in a manner that is usually based on statistical measures and not based on
semantics. The effect is often a removal of concepts from the bottom of the lattice. In
many cases the lattice structure is changed significantly. The resulting lattice may not
always be a sublattice of the original lattice. In some cases the result of pruning is an
ordered set that is no longer a lattice.

Kuznetsov (2007) defines a notion of “stability” of a formal concept based on his
earlier work on stability in similarity operations (Kuznetsov, 1990). Roughly, the stabil-
ity index of a concept C is based on counting the number of those subsets of the extent
of C whose intent equals the intent of C, divided by some number related to the size
of the extent. The idea behind this is to determine how many objects in the extent are
necessary and sufficient to creating the concept. This is because a concept can also have
many objects that are shared with many other concepts and are not defining for this
particular concept. The ConExp software (mentioned before) implements a similar but
slightly different notion of “stability” which, according to ConExp’s user guide, calcu-
lates for each concept the minimal number of objects needed to be removed so that the
intent of this concept disappears from the concept lattice.

Pruning is then the process of removal of “less stable” concepts based on any of
the stability notions. All concepts that are less stable than a user-defined threshold are
removed. Roth et al. (2008) use a slight variant of Kuznetsov’s definition of stability
for their pruning in combination with their notions of nesting and zooming. As men-
tioned above Roth et al.’s notion of “zooming” is slightly different from Vogt & Wille’s
(1995). They divide the set of attributes based on preferences and use attributes that
are considered more important in outer scales. The inner scales are then “pruned” in-
dividually, using local instead of global criteria. Belohlavek & Sklenar (2005) propose
a different method of pruning based on attribute dependency formulas, which uses an
expert-specified hierarchy on the set of attributes.



Last but not least, an iceberg lattice (Stumme et al., 2002) is an order filter consisting
of the top most concepts of a concept lattice. Only those concepts are included whose
concepts have a “support” that is higher than a threshold. These concepts are called
“frequent”. The support is calculated as the number of objects of the concept divided
by the total number of objects in the formal context. The notion of iceberg lattices was
developed in the framework of data mining and is based on what is called “frequent
itemsets” in data mining terminology. A variation of this approach is to also include the
immediate lower neighbours of the frequent concepts. The resulting ordered set need
not be an order filter.

Old (2003) describes the notion of restricting concept lattices, with respect to
neighbourhood lattices. Neighbourhood lattices were first described by Rudolf Wille
in an unpublished manuscript and first published by Sedelow & Sedelow (1993) in the
context of lexical databases. The operation which underlies the selection of elements in
a neighbourhood has been called the “plus operator” (Priss & Old, 2004) as opposed
to the “prime operator” used in concept formation, This is because the prime operator
applied to a set of objects selects all attributes which are shared among all objects in
the set whereas the plus operator selects all attributes that belong to at least one of the
objects in the set. For a large formal context A, the plus operator can be used to de-
rive a smaller “neighbourhood context” B as follows: starting with an object or a set
of objects of A, the plus operator is applied an even number of times to determine the
set of objects of B and an odd number of times to determine the set of attributes of B.
This context B represents the neighbourhood of the object that was used at the start
of the operation. Because the plus operator is not a closure operator, a few iterations
of the operator can result in a context B whose size is fast approaching the size of A.
Therefore Old (2003) has experimented with “restricted” neighbourhood lattices which
modify the plus operator by selecting objects (attributes) which have at least two (three,
etc) attributes (objects) instead of at least one.

5 Decomposition and general scaling

Ganter & Wille (1999) describe numerous methods for deriving parts and decompo-
sitions of concept lattices. The methods that are used in actual applications and that
are implemented in FCA software are usually only the simplest examples of such con-
structions. For example, a horizontal decomposition of a lattice is a decomposition into
components whose horizontal sum (Ganter & Wille, 1999) is the original lattice. A
horizontal decomposition of a lattice refers to the components that a lattice falls into
after removing the top and bottom concept. If a plus operator is applied until the sets
do not change any further, it yields a horizontal decomposition of the original lattice
(Priss & Old, 2006). Horizontal decompositions have been used in software analysis
(Snelting, 2005) and other applications. A form of decomposition is also the Semantic
Mirrors method. This method was invented by Dyvik (2004) and translated into FCA
terminology by Priss & Old (2005). The Semantic Mirrors method is similar to a form
of repeated applications of decomposition.



6 Data weeding techniques for Roget’s Thesaurus

This section discusses which of the data weeding techniques described before are rel-
evant for Roget’s Thesaurus. But first it shall be explained why Roget’s Thesaurus is
of interest. Roget’s Thesaurus (1911, 1962) is a semantic dictionary that is organised
by concepts, rather than words, into a classification tree. The explicit structure of the
book consists of three main parts. Following the front matter is the top level of the hier-
archy represented by the tabular Synopsis of Categories. This is followed by the body,
or Sense Index of the book, which continues the hierarchy down to the lowest level.
The Sense Index lists the 1,000 or so categories representing the notions found at the
most detailed level of the Synopsis. Categories generally occur in pairs as opposed no-
tions, or antonyms. Each category is subdivided into paragraphs which contain groups
of words at the lowest level. The words in each group at the lowest level are considered
“synonyms” with respect to the thesaurus structure. Each group of synonyms denotes
a “sense”. A particular occurrence of a word is also called an “entry” of the thesaurus.
The notation for senses used in this paper (e.g. 227:1:1) consists of the category number
(227), followed by the paragraph number (1) and the synonym group number (1). At
the back of the book is the Word Index, listing the words in alphabetic order, along with
their senses ordered by part-of-speech. The senses are represented in the Word Index as
references to locations in the Sense Index. On any particular page of the Sense Index
the relations of synonymy and antonymy can be seen.

Roget’s Thesaurus has been studied or used for the automatic classification of text,
automatic indexing, natural language processing, word sense disambiguation, seman-
tic classification, computer-based reasoning, content analysis, discourse analysis, auto-
matic translation, and a range of other applications by many different researchers (cf.
Old (2003 and 2004) and Priss & Old (2009) for more details). The reason why the The-
saurus has been used in such applications is because it contains an implicit conceptual
structure based on the polysemy and synonymy relationships between the word entries
and their senses. But although the explicit structure of Roget’s Thesaurus is evident to
any reader, the implicit, hidden, or “inner structure” (Sedelow, 1990) is not. FCA can
be a useful tool in exploring this inner structure because the relationship between words
and senses for the Thesaurus is a very large formal context. Each “entry” corresponds
to a cross in this context. Since the formal context has about 113,000 objects, 71,000
attributes and 200,000 crosses, some data weeding technique is required in order to
extract smaller-sized lattices.

Neighbourhood lattices, as described in the previous section, have been used for the
exploration of Roget’s Thesaurus since this had been described by Sedelow & Sedelow
(1993). A n-m-neighbourhood starts with an object and has the plus operator applied
(2n − 2)-times to obtain the set of objects and (2m − 1)-times to obtain the set of at-
tributes. Fig. 4 shows a 2-1 neighbourhood for the word “think” (i.e., the plus operator
has been applied twice to retrieve the objects and once to retrieve the attributes). Neigh-
bourhood lattices can be of very different sizes. We have calculated the sizes of all 2-1
and 2-2 neighbourhoods of common words in Roget’s Thesaurus (using Roget (1962)).
The neighbourhoods range from single-concept lattices (for words such as “amoeba”)
to a with 118 concepts (713 concepts) lattice for the word “cut” in the case of 2-1 neigh-
bourhoods (2-2 neighbourhoods, respectively). A neighbourhood that is too small may



provide too little information about a word, whereas a neighbourhood that is too large
may be indecipherable for a user. For some words, a 2-1 neighbourhood lattice is of
a good size. For other words a 2-2 or 3-2 neighbourhood lattice is more interesting.
For some words, neighbourhood lattices should be further reduced using data weeding
techniques.

Fig. 4. A neighbourhood lattice from Roget’s Thesaurus for the word “think”

We have built an on-line interface where a user explores the thesaurus by entering
a word and then viewing a neighbourhood lattice of that word. An algorithm has to be
found that automatically adjusts the size of the lattice5. The remainder of this section
investigates which data weeding techniques are appropriate for this purpose. Visual
reduction techniques are really a matter of the display software that is used because
they do not affect the structure of the lattices. Scaling and faceting often depend on
manual subdivision of the set of attributes, which is not applicable in this case. Thus,
the techniques that are of interest are pruning, restriction and decomposition.

Figs. 5 and 6 show a pruned lattice and an iceberg lattice, respectively, for the exam-
ple from Fig. 4. Unfortunately, pruning and iceberg lattices appear not to be appropriate
data weeding techniques for Roget’s Thesaurus. This is because neighbourhood lattices
are always of a particular structure. Neighbourhood lattices of type 2-1 always have
the original word attached to the bottom node. They normally contain many more ob-
jects than attributes (because the plus operator has been applied twice to retrieve the

5 http://www.roget.org



objects). Most of the objects that were added in the last step in a 2-1 neighbourhood
lattice are attached to the nodes adjacent to the top node because their distinguishing
attributes are not yet part of the neighbourhood context. Dually, most of the attributes
in a 2-2 neighbourhood lattice will be attached to nodes that are adjacent to the bottom
node. Clearly, the most interesting objects in Fig. 4 are “expect”, “mind”, “consider”,
“fancy”, and “thought, notion, ...” because they share more than one sense with “think”.
But these objects are exactly the ones that are pruned away in Figs. 5 and 6. Because of
this particular structure, pruning and iceberg lattices are not appropriate. Pruning and
iceberg lattices are based on the relative sizes of the extents, but for neighbourhood
lattices these sizes are distorted by the algorithm.

Fig. 5. The most stable concepts (using ConExp) of the lattice in Fig. 4

In a similar fashion, the Semantic Mirrors method is not of interest for these kinds
of lattices because this method essentially looks for symmetries between the objects
and attributes. This works well for neighbourhood lattices that are derived from bilin-
gual data (the objects are words from one language while the attributes are words from



Fig. 6. An iceberg lattice for the lattice in Fig. 4

a second language). But it does not yield interesting results for Roget’s Thesaurus be-
cause the structures among words are quite different from the structures among senses.
The Semantic Mirrors method applied to the lattice in Fig. 4 would result in a decom-
position of the lattice into single-concept lattices. On the other hand, other forms of
decomposition might be of interest. A horizontal decomposition separates the concept
with the sense 477:7:1 from the rest of the lattice. If horizontal decomposition results
in more than one component, this can (but does not have to) indicate that a word is a
homograph (Old, 2006), i.e. that the word has two completely unrelated senses. In this
case, sense 477:7:1 is a polysemous sense of “think”, but not a homograph.

The most promising data weeding technique for neighbourhood lattices of Roget’s
Thesaurus appears to be restriction (Old, 2003). Fig. 7 shows the restricted lattice of
Fig. 4. This lattice maintains the main structures from Fig. 4, but all objects that do
not share at least two senses with “think” have been removed. Different degrees of
restriction are possible: only keeping words (or senses) that have at least 3 senses (or
words), and so on. Incidentally, in retrospect we discovered (Priss & Old, 2009) that



our restriction algorithm is very similar to techniques developed for Roget’s Thesaurus
by the Cambridge Language Research Unit in the 1950s.

Fig. 7. A restricted neighbourhood lattice

The goal for our on-line interface at roget.org is to generate neighbourhood
lattices that are of appropriate sizes and calculated sufficiently fast. A first strategy was
to use the number of crosses in the context as a rule of thumb for predicting the size
of the neighbourhood lattices (such as if the context has more than 100 crosses, then
use restriction). A similar simple rule is to apply restriction if the smaller of the sets of
objects and attributes is larger than 20 and the larger one is larger than 80. This rule is
not in general useful for concept lattices, but only for the specific lattices derived from
Roget’s Thesaurus. A third possibility is to calculate the sizes of all neighbourhood
lattices (2-1, 2-2 neighbourhoods and restriction) in an off-line mode and to store the
result in a database table. Calculating the number of concepts can be slow for large



lattices, but because it needs to be calculated only once that is not a problem. The third
possible strategy is thus to look-up the sizes of the concept lattices in a table and then
to pick the type of neighbourhood which has a good size. Only about 6000 words in
Roget (1962) have 2-2 neighbourhood lattices with more than 20 concepts. For about
500 words, the 2-1 neighbourhood lattice also has more than 20 concepts. Only about
60 words have 2-1 restricted neighbourhood lattices with more than 30 concepts. For the
word “cut” which has the largest concept neighbourhood of all words in the thesaurus, a
2-1 neighbourhood that is restricted to objects and attributes that have at least 3 crosses
in the context has 38 concepts. This is a size that can still be graphically represented.
On the other hand, according to Priss & Old (2006), there are about 20,000 words for
which the lattice never has more than one concept for any type of neighbourhood. But
these “words” include archaic, foreign and specialist words and phrases, which might
not be very interesting for users.

7 Conclusion

In summary, data weeding techniques select data from a given set based on the specific
needs and purpose of an application. Visual reduction techniques do not change the
lattice structure and are mostly a feature of the software interface that is used to draw
and display the lattices. Scales and facets rely on meaningful subdivisions of the set of
attributes that are often manually derived and not ideally suited for automatically gen-
erated lattices. Although pruning is very useful in other applications (for example for
clustering), it appears to prune away the wrong concepts with respect to neighbourhood
lattices. Some forms of decompositions might be applicable to neighbourhood lattices,
but this needs to be investigated further. Experimentation has shown that restriction
is useful for neighbourhood lattices because it maintains most of the structure of the
lattices while removing objects and attributes.

In general, data weeding techniques appear to be very much dependent on the type
of application. There may not be a single type of technique that is suitable for all kinds
of lattices. An interesting topic for further research would be to determine whether it
might be possible to develop some guidelines that predict which data weeding tech-
niques are appropriate for which types of lattices.

References

1. Belohlavek, Radim; Sklenar, Vladimir (2005). Formal Concept Analysis Constrained by
Attribute-Dependency Formulas. In: Ganter & Godin (Eds.), Formal Concept Analysis: Third
International Conference, ICFCA 2005, Springer Verlag, LNCS 3403, p. 176-191.

2. Carpineto, Claudio; Romano, Giovanni (1995). Ulysses: a lattice-based multiple interaction
strategy retrieval interface. In B. Blumenthal, J. Gornostaev & C. Unger (Eds.), Human-
Computer Interaction, 5th International Conference, EWHCI’95, Moscow, Russia, Springer
Verlag, LNCS 1015, p. 91-104.

3. Dyvik, Helge (2004). Translations as semantic mirrors: from parallel corpus to wordnet. Lan-
guage and Computers, 49, 1, Rodopi, p. 311-326.

4. Furnas, George W. (1981). The FISHEYE View: A New Look at Structured Files. Bell Labora-
tories Technical Memorandum.



5. Ganter, Bernhard; Wille, Rudolf (1999). Formal Concept Analysis. Mathematical Founda-
tions. Springer Verlag.

6. Godin, Robert; Gecsei, Jan; Pichet, Claude (1989). Design of browsing interface for informa-
tion retrieval. In N. J. Belkin, & C. J. van Rijsbergen (Eds.), Proc. SIGIR ’89, p. 32-39.

7. Kuznetsov, Sergej O. (1990). Stability as an estimate of hypotheses based on similarity oper-
ation (in Russian). Nauchno-Tekhnicheskaya Informatsiya (NTI), 2, N12, p. 21-29.

8. Kuznetsov, Sergej O. (2007). On Stability of a Formal Concept. Annals of Mathematics and
Artificial Intelligence, 49, p. 101-115.

9. Old, L. John (2003). The Semantic Structure of Roget’s. A Whole-Language Thesaurus. PhD
Dissertation. Indiana University.

10. Old, L. John (2004). Unlocking the Semantics of Roget’s Thesaurus. In P. Eklund, (Ed.),
Proceedings, Second International Conference on Formal Concept Analysis, Springer Verlag,
LNCS 2961, p. 236-243.

11. Old, L. John, (2006). Homograph Disambiguation using Formal Concept Analysis. In: R.
Missaoui & J. Schmidt (Eds.), 4th International Conference on Formal Concept Analysis,
Springer, LNCS 3874, p. 221-232.

12. Priss, Uta; Old, L. John (2004). Modelling Lexical Databases with Formal Concept Analysis.
Journal of Universal Computer Science, 10, 8, p. 967-984.

13. Priss, Uta; Old, L. John (2005). Conceptual Exploration of Semantic Mirrors. In: Gan-
ter; Godin (eds.), Formal Concept Analysis: Third International Conference, ICFCA 2005,
Springer Verlag, LNCS 3403, p. 21-32.

14. Priss, Uta; Old, L. John (2006). An application of relation algebra to lexical databases. In:
Schaerfe, Hitzler, Ohrstrom (eds.), Conceptual Structures: Inspiration and Application, Pro-
ceedings of the 14th International Conference on Conceptual Structures, ICCS’06, Springer
Verlag, LNAI 4068, p. 388-400.

15. Priss, Uta (2008a). FCA Software Interoperability. In: Belohlavek; Kuznetsov (eds.), Pro-
ceedings of the Sixth International Conference on Concept Lattices and Their Applications
(CLA’08), p. 133-144.

16. Priss, Uta (2008b). Facet-like Structures in Computer Science. Axiomathes, 14, Springer
Verlag, p. 243-255.

17. Priss, Uta; Old, L. John (2009). Revisiting the Potentialities of a Mechanical Thesaurus. In:
Ferre; Rudolph (eds.), Proceedings of the 7th International Conference on Formal Concept
Analysis, ICFCA’09, Springer Verlag, LNAI 5548, p. 284-298.

18. Roget, Peter Mark (1962). Roget’s International Thesaurus. 3rd Edition Thomas Crowell,
New York.

19. Roget, Peter Mark (1911). Roget’s Thesaurus. Available from the Project Gutenberg http:
//promo.net/pg.

20. Roth, Camille; Obiedkov, Sergei; Kourie, Derrick G. (2008). On succinct representation
of knowledge community taxonomies with formal concept analysis. International Journal of
Foundations of Computer Science (IJFCS), 19, 2, p. 383-404.

21. Sedelow, Walter A., Jr. (1990). Computer-based planning technology: an overview of in-
ner structure analysis. In L. J. Old (Ed.), Getting at disciplinary interdependence, Arkansas
University Press, p. 7-23.

22. Sedelow, Sally; Sedelow, Walter (1993). The Concept “concept”. Proceedings of the Fifth
International Conference on Computing and Information, Sudbury, Ontario, Canada, p. 339-
343.

23. Snelting, Gregor (2005). Concept Lattices in Software Analysis. In: Ganter, Stumme, Wille
(Eds.): Formal Concept Analysis, Foundations and Applications. Springer Verlag, LNCS
3626, p. 272-287.

24. Stumme, G.; Taouil, R.; Bastide, Y.; Pasquier, N.; Lakhal. L. (2002). Computing Iceberg
Concept Lattices with Titanic. J. on Knowledge and Data Engineering, 42, 2, p. 189-222.



25. Tilley, Thomas (2004). Tool Support for FCA. In: Eklund (ed.), Concept Lattices: Second
International Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, p. 104-
111.

26. Vogt, Frank; Wille, Rudolf (1995). TOSCANA - a graphical tool for analyzing and exploring
data. In: Tamassia; Tollis (eds.). Graph Drawing. Springer Verlag, LNCS 894, p. 226-233.


